Problem 1 Frame expansion with noise

We have the following:

\[E \left\{ \| f - f_w \|_2^2 \right\} = E \left\{ \left\| \frac{1}{A} \sum_{j=1}^{M} w_j g_j \right\|_2^2 \right\} = E \left\{ \frac{1}{A^2} \sum_{j=1}^{M} \sum_{\ell=1}^{M} w_j w_\ell \langle g_j, g_\ell \rangle \right\} \]

\[= \frac{1}{A^2} \sum_{j=1}^{M} \sum_{\ell=1}^{M} E \{ w_j w_\ell \} \langle g_j, g_\ell \rangle = \frac{N_0}{A^2} \sum_{j=1}^{M} \langle g_j \rangle_1^2 \]

\[= \frac{N_0 M}{A^2} = \frac{N_0 N}{r}. \]

For any Hilbert space of dimension \(N \), the MSE is inversely proportional to the redundancy. Therefore, it is an advantage to formulate algorithms involving frames than bases, which have redundancy \(r = 1 \).

Problem 2 Fat matrix inversion

a) The equation \(\mathbf{A} \mathbf{x} = \mathbf{y} \) has infinitely many solutions if \(\mathbf{y} \) is in the column range space of \(\mathbf{A} \). This is guaranteed when \(\text{rank} \mathbf{A} = S \), i.e., when all rows of \(\mathbf{A} \) are linearly independent (or equivalently, \(S \) columns of \(\mathbf{A} \) are linearly independent).

The equation \(\mathbf{A} \mathbf{x} = \mathbf{y} \) has no solution if \(\mathbf{y} \) is not in the column range space of \(\mathbf{A} \). This can only happen when \(\text{rank} \mathbf{A} < S \), i.e., when \(\mathbf{A} \) has linearly dependent rows (or equivalently, less than \(S \) linearly independent columns).

b) Solving the equation \(\mathbf{A} \mathbf{x} = \mathbf{y} \) under the constraint that \(x_j = 0 \) for \(j \notin S \) amounts to solving the equation \(\mathbf{A} \mathbf{\hat{x}} = \mathbf{y} \), where \(\mathbf{\hat{A}} \) is the \(S \times S \) matrix obtained by removing the \(N - S \) columns of \(\mathbf{A} \) that are indexed by \(\mathbf{S}^c \) and where the unknown \(\mathbf{\hat{x}} \) is an \(S \)-dimensional vector. The equation \(\mathbf{\hat{A}} \mathbf{\hat{x}} = \mathbf{y} \) has exactly one solution if \(\det \mathbf{\hat{A}} \neq 0 \), i.e., if \(\mathbf{\hat{A}} \) has full rank. Therefore, the equation \(\mathbf{A} \mathbf{x} = \mathbf{y} \) has exactly one solution if the columns \(\{\mathbf{a}_j\}_{j \in \mathbf{S}} \) indexed by \(\mathbf{S} \) are linearly independent.
Problem 3 Eigenvalue decomposition of circulant matrices

a) The kth entry of the vector Cf_n, $n = 0, \ldots, N - 1$, equals

$$
[Cf_n]_k = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} c_k \omega^{nk} = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} c_m \omega^{n(k \oplus m)} = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} c_m e^{2\pi i n(k \ominus m) / N} \quad (1)
$$

$$
= \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} c_m e^{2\pi i n(k-m) / N} = \frac{1}{\sqrt{N}} e^{\pi i n k / N} \sum_{m=0}^{N-1} c_m e^{-2\pi i nm / N} \quad (2)
$$

$$
= \frac{\omega^{nk}}{\sqrt{N}} \lambda_n = \lambda_n [f_n]_k, \quad (3)
$$

where \ominus denotes the subtraction modulo N in (2), i.e., $k \ominus \ell = k - \ell \mod N$, where the second inequality in (2) follows from the fact that $a \mod N = a - \lfloor a / N \rfloor N$ and where we defined

$$
\lambda_n = \sum_{m=0}^{N-1} c_m e^{-2\pi i nm / N}
$$

in (3). Therefore, $Cf_n = \lambda_n f_n$ for all $n = 0, \ldots, N - 1$ and C can be decomposed as

$$
C = F^H \Lambda F,
$$

where F is the $N \times N$ matrix whose nth column is f_n and $\Lambda = \text{diag}(\lambda_0, \lambda_1, \ldots, \lambda_{N-1})$.

b) From a), we know that C_1 and C_2 can be written as

$$
C_1 = F^H \Lambda_1 F \\
C_2 = F^H \Lambda_2 F,
$$

where Λ_1 and Λ_2 are diagonal matrices. Since diagonal matrices commute, it holds that

$$
C_1 C_2 = F^H \Lambda_1 F F^H \Lambda_2 F = F^H \Lambda_1 \Lambda_2 F = F^H \Lambda_2 \Lambda_1 F = F^H \Lambda_2 F F^H \Lambda_1 F = C_2 C_1.
$$

Hence, C_1 and C_2 commute.

Problem 4 Spectrum and eigenvalues

- For all $f \in L^2[0, 1]$, it holds that

$$
\|Tf\|_{L^2[0, 1]}^2 = \int_0^1 |xf(x)|^2 dx = \int_0^1 \frac{x^2}{x^2} |f(x)|^2 dx \leq \int_0^1 |f(x)|^2 dx = \|f\|_{L^2[0, 1]}^2,
$$

which shows that T is bounded.

- For all $f, g \in L^2[0, 1]$, we have

$$
\langle Tf, g \rangle_{L^2[0, 1]} = \int_0^1 T f(x) g(x) dx = \int_0^1 f(x) \overline{g(x)} dx = \int_0^1 f(x) \overline{g(x)} dx = \int_0^1 f(x) \bar{g(x)} dx = \langle f, Tg \rangle_{L^2[0, 1]}.
$$

Hence, $T^* = T$, which means that T is self-adjoint.
• Assume that there exists \(\lambda \in \mathbb{C} \) and \(f \in L^2[0, 1] \setminus \{0\} \) such that \(T f = \lambda f \). Then

\[
T f(x) = x f(x) = \lambda f(x)
\]

for all \(x \in [0, 1] \). If \(\lambda \notin [0, 1] \), then (4) implies that \(f(x) = 0 \) for all \(x \in [0, 1] \). If \(\lambda \in [0, 1] \), then (4) implies that \(f(x) = 0 \) for all \(x \in [0, 1] \setminus \{\lambda\} \). In both cases, \(f \) is zero almost everywhere, that is, \(f = 0 \) in \(L^2[0, 1] \). This constitutes a contradiction, and therefore, \(T \) has no eigenvalues.

• If \(\lambda \notin [0, 1] \), then \(T - \lambda I \) has an inverse, which is the multiplication by \(1/(x - \lambda) \), i.e.,

\[
\forall x \in [0, 1], \quad \left((T - \lambda I)^{-1} f\right)(x) = \frac{f(x)}{x - \lambda}.
\]

If \(\lambda \in [0, 1] \), \(T - \lambda I \) is injective (as previously shown) but not surjective. Indeed, \(1 \notin \mathcal{R}(T - \lambda I) \), because \(x \mapsto 1/(x - \lambda) \) does not belong to \(L^2[0, 1] \). Hence, \(T - \lambda I \) is not invertible, and therefore, the spectrum of \(T \) is \(\text{Sp} \ T = [0, 1] \).

Problem 5
Haar wavelet expansion

By definition, we have that \(\text{supp} \Psi = [0, 1) \) and hence, for all \(j, k \in \mathbb{Z} \), it holds that

\[
\text{supp} \Psi_{j,k} = [2^j k, 2^j (k + 1)).
\]

Let \((j, k) \neq (j', k') \).

• If \(j = j' \) and \(k \neq k' \), then by (5), the support of \(\Psi_{j,k} \) and \(\Psi_{j',k'} \) are disjoint, i.e.,

\[
\text{supp} \Psi_{j,k} \cap \text{supp} \Psi_{j',k'} = \emptyset,
\]

implying that \(\langle \Psi_{j,k}, \Psi_{j',k'} \rangle = 0 \).

• If \(j \neq j' \), assume without loss of generality that \(j > j' \). Then, \(\Psi_{j,k} \) is constant on the support of \(\Psi_{j',k'} \), and since

\[
\int_{-\infty}^{+\infty} \Psi_{j,k}(x) dx = \int_{2^j k}^{2^j (k + 1)} 2^{-j/2} \Psi(2^{-j} x - k) dx = 2^{j/2} \int_{0}^{1} \Psi(x) dx = 0,
\]

it follows that \(\langle \Psi_{j,k}, \Psi_{j',k'} \rangle = 0 \).

This shows that \(\{\Psi_{j,k}\}_{j,k \in \mathbb{Z}} \) forms an orthogonal system. Moreover, we have for all \(j, k \in \mathbb{Z} \),

\[
\|\Psi_{j,k}\|^2 = \int_{-\infty}^{+\infty} |\Psi_{j,k}(x)|^2 dx = \int_{2^j k}^{2^j (k + 1)} 2^{-j/2} |\Psi(2^{-j} x - k)|^2 dx = \int_{0}^{1} |\Psi(x)| dx = 1.
\]

Therefore, \(\{\Psi_{j,k}\}_{j,k \in \mathbb{Z}} \) forms an orthonormal system. As stated in the problem statement, the family \(\{\Psi_{j,k}\}_{j,k \in \mathbb{Z}} \) is in addition complete, and hence forms an orthonormal basis for \(L^2(\mathbb{R}) \). Since the function \(f \) defined in the problem statement belongs to \(L^2(R) \), we can write

\[
\forall x \in \mathbb{R}, \quad f(x) = e^{-|x|} = \sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \langle f, \Psi_{j,k} \rangle \Psi_{j,k}(x),
\]
where the series coefficients are computed as follows:

\[
\langle f, \Psi_{j,k} \rangle = \int_{-\infty}^{+\infty} f(x) \Psi_{j,k}(x) \, dx = 2^{-j/2} \int_{-\infty}^{+\infty} e^{-|x|} \Psi(2^{-j} x - k) \, dx \\
= 2^{-j/2} \int_{-2^{-j}k}^{2^{-j}(k+1)} e^{-|x|} \Psi(2^{-j} x) \, dx \\
= 2^{-j/2} \int_{-2^{-j}k}^{2^{-j}(k+1)} e^{-|x|} \, dx - 2^{-j/2} \int_{2^{-j}k}^{2^{-j}(k+1)} e^{-|x|} \, dx.
\]

If \(k \geq 0 \), it gives

\[
\langle f, \Psi_{j,k} \rangle = 2^{-j/2} \int_{-2^{-j}k}^{2^{-j}(k+1)} e^{-x} \, dx - 2^{-j/2} \int_{2^{-j}k}^{2^{-j}(k+1)} e^{-x} \, dx = 2^j/2 e^{-2^j k} + 2^j/2 e^{-2^j (k+1)} - 2^{(2-j)/2} e^{-2^j k - 2^j}.
\]

If \(k < 0 \), we have

\[
\langle f, \Psi_{j,k} \rangle = 2^{-j/2} \int_{2^{-j}k}^{2^{-j}(k+1)} e^{x} \, dx - 2^{-j/2} \int_{2^{-j}k}^{2^{-j}(k+1)} e^{x} \, dx = 2^{(2-j)/2} e^{2^j k + 2^j} - 2^{j/2} e^{2^j k} - 2^{j/2} e^{2^j (k+1)}.
\]