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Abstract
First steps towards a mathematical theory of deep
convolutional neural networks for feature extrac-
tion were made—for the continuous-time case—
in Mallat, 2012, and Wiatowski and Bölcskei,
2015. This paper considers the discrete case,
introduces new convolutional neural network ar-
chitectures, and proposes a mathematical frame-
work for their analysis. Specifically, we estab-
lish deformation and translation sensitivity re-
sults of local and global nature, and we inves-
tigate how certain structural properties of the
input signal are reflected in the correspond-
ing feature vectors. Our theory applies to
general filters and general Lipschitz-continuous
non-linearities and pooling operators. Experi-
ments on handwritten digit classification and fa-
cial landmark detection—including feature im-
portance evaluation—complement the theoreti-
cal findings.

1. Introduction
Deep convolutional neural networks (DCNNs) have proven
tremendously successful in a wide range of machine lear-
ning tasks (Bengio et al., 2013; LeCun et al., 2015). Such
networks are composed of multiple layers, each of which
computes convolutional transforms followed by the appli-
cation of non-linearities and pooling operators.

DCNNs are typically distinguished according to (i)
whether the filters employed are learned (in a supervised
(LeCun et al., 1998; Huang & LeCun, 2006; Jarrett et al.,
2009) or unsupervised (Ranzato et al., 2006; 2007; Jar-
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rett et al., 2009) fashion) or pre-specified (and structured,
such as, e.g., wavelets (Serre et al., 2005; Mutch & Lowe,
2006; Mallat, 2012), or unstructured, such as random fil-
ters (Ranzato et al., 2007; Jarrett et al., 2009)), (ii) the
non-linearities used (e.g., logistic sigmoid, hyperbolic tan-
gent, modulus, or rectified linear unit), and (iii) the pool-
ing operator employed (e.g., sub-sampling, average pool-
ing, or max-pooling). While a given choice of filters, non-
linearities, and pooling operators will lead to vastly diffe-
rent performance results across datasets, it is remarkable
that the overall DCNN architecture allows for impressive
classification results across an extraordinarily broad range
of applications. It is therefore of significant interest to un-
derstand the mechanisms underlying this universality.

First steps towards addressing this question and develo-
ping a mathematical theory of DCNNs for feature extrac-
tion were made—for the continuous-time case—in (Mallat,
2012; Wiatowski & Bölcskei, 2015). Specifically, (Mal-
lat, 2012) analyzed so-called scattering networks, where
signals are propagated through layers that employ di-
rectional wavelet filters and modulus non-linearities but
no intra-layer pooling. The resulting wavelet-modulus
feature extractor is horizontally (i.e., in every network
layer) translation-invariant (accomplished by letting the
wavelet scale parameter go to infinity) and deformation-
stable, both properties of significance in practical fea-
ture extraction applications. Recently, (Wiatowski &
Bölcskei, 2015) considered Mallat-type networks with ar-
bitrary filters (that may be learned or pre-specified), gen-
eral Lipschitz-continuous non-linearities (e.g., rectified lin-
ear unit, shifted logistic sigmoid, hyperbolic tangent, and
the modulus function), and a continuous-time pooling op-
erator that amounts to a dilation. The essence of the re-
sults in (Wiatowski & Bölcskei, 2015) is that vertical (i.e.,
asymptotically in the network depth) translation invariance
and Lipschitz continuity of the feature extractor are in-
duced by the network structure per se rather than the spe-
cific choice of filters and non-linearities. For band-limited
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signals (Wiatowski & Bölcskei, 2015), cartoon functions
(Grohs et al., 2016), and Lipschitz-continuous functions
(Grohs et al., 2016), Lipschitz continuity of the feature ex-
tractor automatically leads to bounds on deformation sen-
sitivity.

A discrete-time setup for wavelet-modulus scattering net-
works (referred to as ScatNets) was considered in (Bruna
& Mallat, 2013).

Contributions. The purpose of the present paper is to de-
velop a theory of discrete DCNNs for feature extraction.
Specifically, we follow the philosophy put forward in (Wia-
towski & Bölcskei, 2015; Grohs et al., 2016). Our the-
ory incorporates general filters, Lipschitz non-linearities,
and Lipschitz pooling operators. In addition, we introduce
and analyze a wide variety of new network architectures
which build the feature vector from subsets of the layers.
This leads us to the notions of local and global feature
vector properties with globality pertaining to characteris-
tics brought out by the union of features across all network
layers, and locality identifying attributes made explicit in
individual layers.

Besides providing analytical performance results of gene-
ral validity, we also investigate how certain structural pro-
perties of the input signal are reflected in the corresponding
feature vectors. Specifically, we analyze the (local and
global) deformation and translation sensitivity properties of
feature vectors corresponding to sampled cartoon functions
(Donoho, 2001). For simplicity of exposition, we focus on
the 1-D case throughout the paper, noting that the exten-
sion to the higher-dimensional case does not pose any sig-
nificant difficulties.

Our theoretical results are complemented by extensive nu-
merical studies on facial landmark detection and handwrit-
ten digit classification. Specifically, we elucidate the role of
local feature vector properties through a feature relevance
study.

Notation. The complex conjugate of z ∈ C is denoted by
z. We write Re(z) for the real, and Im(z) for the imaginary
part of z ∈ C. We let HN := {f : Z → C | f [n] = f [n+
N ], ∀n ∈ Z} be the set of N -periodic discrete-time sig-
nals1, and set IN := {0, 1, . . . , N − 1}. The delta function
δ ∈ HN is δ[n] := 1, for n = kN , k ∈ Z, and δ[n] := 0,
else. For f, g ∈ HN , we set 〈f, g〉 :=

∑
k∈IN f [k]g[k],

‖f‖1 :=
∑
n∈IN |f [n]|, ‖f‖2 := (

∑
n∈IN |f [n]|2)1/2,

and ‖f‖∞ := supn∈IN |f [n]|. We denote the dis-
crete Fourier transform (DFT) of f ∈ HN by f̂ [k] :=∑
n∈IN f [n]e−2πikn/N . The circular convolution of f ∈

HN and g ∈ HN is (f ∗ g)[n] :=
∑
k∈IN f [k]g[n − k].

1We note that HN is isometrically isomorphic to CN , but we
prefer to work with HN for the sake of expositional simplicity.

We write (Tmf)[n] := f [n − m], m ∈ Z, for the cyclic
translation operator. The supremum norm of a continuous-
time function c : R → C is ‖c‖∞ := supx∈R |c(x)|. The
indicator function of an interval [a, b] ⊆ R is defined as
1[a,b](x) := 1, for x ∈ [a, b], and 1[a,b](x) := 0, for
x ∈ R\[a, b]. The cardinality of the set A is denoted by
card(A).

2. The basic building block
The basic building block of a DCNN, described in this sec-
tion, consists of a convolutional transform followed by a
non-linearity and a pooling operation.

2.1. Convolutional transform

A convolutional transform is made up of a set of fil-
ters ΨΛ = {gλ}λ∈Λ. The finite index set Λ can be
thought of as labeling a collection of scales, directions, or
frequency-shifts. The filters gλ—referred to as atoms—
may be learned (in a supervised or unsupervised fashion),
pre-specified and unstructured such as random filters, or
pre-specified and structured such as wavelets, curvelets,
shearlets, or Weyl-Heisenberg functions.
Definition 1. Let Λ be a finite index set. The collection
ΨΛ = {gλ}λ∈Λ ⊆ HN is called a convolutional set with
Bessel bound B ≥ 0 if∑

λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22, ∀f ∈ HN . (1)

Condition (1) is equivalent to∑
λ∈Λ

|ĝλ[k]|2 ≤ B, ∀k ∈ IN , (2)

and hence, every finite set {gλ}λ∈Λ is a convolutional set
with Bessel bound B∗ := maxk∈IN

∑
λ∈Λ |ĝλ[k]|2. As

(f ∗ gλ)[n] =
〈
f, gλ[n− ·]

〉
, n ∈ IN , λ ∈ Λ, the outputs

of the filters gλ may be interpreted as inner products of the
input signal f with translates of the atoms gλ. Frame theory
(Daubechies, 1992) therefore tells us that the existence of a
lower bound A > 0 in (2) according to

A ≤
∑
λ∈Λ

|ĝλ[k]|2 ≤ B, ∀k ∈ IN , (3)

implies that every element in HN can be writ-
ten as a linear combination of elements in the set{
gλ[n− ·]

}
n∈IN ,λ∈Λ

(or in more technical parlance, the

set
{
gλ[n− ·]

}
n∈IN ,λ∈Λ

is complete for HN ). The ab-
sence of a lower bound A > 0 may therefore result in ΨΛ

failing to extract essential features of the signal f . We note,
however, that even learned filters are likely to satisfy (3) as
all that is needed is, for each k ∈ IN , to have ĝλ[k] 6= 0 for
at least one λ ∈ Λ. As we shall see below, the existence of
a lower bound A > 0 in (3) is, however, not needed for our
theory to apply.
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Examples of structured convolutional sets withA = B = 1
include, in the 1-D case, wavelets (Daubechies, 1992) and
Weyl-Heisenberg functions (Bölcskei & Hlawatsch, 1997),
and in the 2-D case, tensorized wavelets (Mallat, 2009),
curvelets (Candès et al., 2006), and shearlets (Kutyniok &
Labate, 2012a).

2.2. Non-linearities

The non-linearities ρ : C → C we consider are all point-
wise and satisfy the Lipschitz property |ρ(x) − ρ(y)| ≤
L|x− y|, ∀x, y ∈ C, for some L > 0.

2.2.1. EXAMPLE NON-LINEARITIES

• The hyperbolic tangent non-linearity, defined as
ρ(x) = tanh(Re(x)) + i tanh(Im(x)), where
tanh(x) = ex−e−x

ex+e−x , has Lipschitz constant L = 2.

• The rectified linear unit non-linearity is given by
ρ(x) = max{0,Re(x)} + imax{0, Im(x)}, and has
Lipschitz constant L = 2.

• The modulus non-linearity is ρ(x) = |x|, and has Lip-
schitz constant L = 1.

• The logistic sigmoid non-linearity is defined as
ρ(x) = sig(Re(x)) + i sig(Im(x)), where sig(x) =

1
1+e−x , and has Lipschitz constant L = 1/2.

We refer the reader to (Wiatowski & Bölcskei, 2015) for
proofs of the Lipschitz properties of these example non-
linearities.

2.3. Pooling operators

The essence of pooling is to reduce signal dimensionality
in the individual network layers and to ensure robustness of
the feature vector w.r.t. deformations and translations.

The theory developed in this paper applies to general pool-
ing operators P : HN → HN/S , where N,S ∈ N with
N/S ∈ N, that satisfy the Lipschitz property ‖Pf −
Pg‖2 ≤ R‖f − g‖, ∀f, g ∈ HN , for some R > 0. The in-
teger S will be referred to as pooling factor, and determines
the “size” of the neighborhood values are combined in.

2.3.1. EXAMPLE POOLING OPERATORS

• Sub-sampling, defined as P : HN → HN/S ,
(Pf)[n] = f [Sn], n ∈ IN/S , has Lipschitz constant
R = 1. For S = 1, P is the identity operator which
amounts to “no pooling”.

• Averaging, defined as P : HN → HN/S , (Pf)[n] =∑Sn+S−1
k=Sn αk−Snf [k], n ∈ IN/S , has Lipschitz con-

stant R = S1/2 maxk∈{0,...,S−1} |αk|. The weights

{αk}S−1
k=0 can be learned (LeCun et al., 1998) or pre-

specified (Pinto et al., 2008) (e.g., uniform pooling
corresponds to αk = 1

S , for k ∈ {0, . . . , S − 1}).

• Maximization, defined as P : HN → HN/S ,
(Pf)[n] = maxk∈{Sn,...,Sn+S−1} |f [k]|, n ∈ IN/S ,
has Lipschitz constant R = 1.

We refer to Appendix B in the Supplement for proofs of the
Lipschitz property of these three example pooling operators
along with the derivations of the corresponding Lipschitz
constants.

3. The network architecture
The architecture we consider is flexible in the following
sense. In each layer, we can feed into the feature vector
either the signals propagated down to that layer (i.e., the
feature maps), filtered versions thereof, or we can decide
not to have that layer contribute to the feature vector.

The basic building blocks of our network are the triplets
(Ψd, ρd, Pd) of filters, non-linearities, and pooling opera-
tors associated with the d-th network layer and referred to
as modules. We emphasize that these triplets are allowed to
be different across layers.

Definition 2. For network layers d, 1 ≤ d ≤ D, let Ψd =
{gλd
}λd∈Λd

⊆ HNd
be a convolutional set, ρd : C → C

a point-wise Lipschitz-continuous non-linearity, and Pd :
HNd

→ HNd+1
a Lipschitz-continuous pooling operator

withNd+1 = Nd

Sd
, where Sd ∈ N denotes the pooling factor

in the d-th layer. Then, the sequence of triplets

Ω :=
(

(Ψd, ρd, Pd)
)

1≤d≤D

is called a module-sequence.

Note that the dimensions of the spaces HNd
satisfy

N1 ≥ N2 ≥ . . . ≥ ND. Associated with the module
(Ψd, ρd, Pd), we define the operator

(Ud[λd]f) := Pd(ρd(f ∗ gλd
)) (4)

and extend it to paths on index sets

q = (λ1, λ2, . . . , λd) ∈ Λ1 × Λ2 × · · · × Λd := Λd1,

for 1 ≤ d ≤ D, according to

U [q]f =U [(λ1, λ2, . . . , λd)]f

:=Ud[λd] · · ·U2[λ2]U1[λ1]f.
(5)

For the empty path e := ∅ we set Λ0
1 := {e} and let

U [e]f := f , for all f ∈ HN1 .

The network output in the d-th layer is given by (U [q]f) ∗
χd, q ∈ Λd1, where χd ∈ HNd+1

is referred to as output-
generating atom. Specifically, we let χd be (i) the delta
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Figure 1. Network architecture underlying the feature extractor
(6). The index λ(k)

d corresponds to the k-th atom g
λ
(k)
d

of the

convolutional set Ψd associated with the d-th network layer. The
function χd is the output-generating atom of the d-th layer. The
root of the network corresponds to d = 0.

function δ[n], n ∈ INd+1
, if we want the output to equal

the unfiltered features U [q]f , q ∈ Λd1, propagated down
to layer d, or (ii) any other signal of length Nd+1, or (iii)
χd = 0 if we do not want layer d to contribute to the feature
vector. From now on we formally add χd to the set Ψd+1 =
{gλd+1

}λd+1∈Λd+1
, noting that {gλd+1

}λd+1∈Λd+1
∪ {χd}

forms a convolutional set Ψ′d+1 with Bessel boundB′d+1 ≤
Bd+1 + maxk∈INd+1

|χ̂d[k]|2. We emphasize that the
atoms of the augmented set {gλd+1

}λd+1∈Λd+1
∪ {χd}

are employed across two consecutive layers in the sense
of χd generating the output in the d-th layer according
to (U [q]f) ∗ χd, q ∈ Λd1, and the remaining atoms
{gλd+1

}λd+1∈Λd+1
propagating the signals U [q]f , q ∈ Λd1,

from the d-th layer down to the (d + 1)-st layer according
to (4), see Fig. 1. With slight abuse of notation, we shall
henceforth write Ψd for Ψ′d and Bd for B′d as well.

We are now ready to define the feature extractor ΦΩ based
on the module-sequence Ω.
Definition 3. Let Ω =

(
(Ψd, ρd, Pd)

)
1≤d≤D be a module-

sequence. The feature extractor ΦΩ based on Ω maps f ∈
HN1

to its features

ΦΩ(f) :=

D−1⋃
d=0

ΦdΩ(f), (6)

where ΦdΩ(f) := {(U [q]f) ∗ χd}q∈Λd
1

is the collection of
features generated in the d-th network layer (see Fig. 1).

The dimension of the feature vector ΦΩ(f) is given by
ε0N1 +

∑D−1
d=1 εdNd+1

(∏d
k=1 card(Λk)

)
, where εd = 1,

if an output is generated (either filtered or unfiltered) in the
d-th network layer, and εd = 0, else. As Nd+1 = Nd

Sd
=

· · · = N1

S1···Sd
, for d ≥ 1, the dimension of the overall fea-

ture vector is determined by the pooling factors Sk and, of
course, the layers that contribute to the feature vector.
Remark 1. It was argued in (Bruna & Mallat, 2013;
Andén & Mallat, 2014; Oyallon & Mallat, 2014) that the

features Φ1
Ω(f) when generated by wavelet filters, modu-

lus non-linearities, without intra-layer pooling, and by em-
ploying output-generating atoms with low-pass characte-
ristics, describe mel frequency cepstral coefficients (Davis
& Mermelstein, 1980) in 1-D, and SIFT-descriptors (Lowe,
2004; Tola et al., 2010) in 2-D.

4. Sampled cartoon functions
While our main results hold for general signals f , we can
provide a refined analysis for the class of sampled cartoon
functions. This allows to understand how certain struc-
tural properties of the input signal, such as the presence
of sharp edges, are reflected in the feature vector. Cartoon
functions—as introduced in continuous time in (Donoho,
2001)—are piecewise “smooth” apart from curved discon-
tinuities along Lipschitz-continuous hypersurfaces. They
hence provide a good model for natural images (see Fig. 2,
left) such as those in the Caltech-256 (Griffin et al., 2007)
and the CIFAR-100 (Krizhevsky, 2009) datasets, for ima-
ges of handwritten digits (LeCun & Cortes, 1998) (see Fig.
2, middle), and for images of geometric objects of different
shapes, sizes, and colors as in the Baby AI School dataset2.

Bounds on deformation sensitivity for cartoon functions in
continuous-time DCNNs were recently reported in (Grohs
et al., 2016). Here, we analyze deformation sensitivity
for sampled cartoon functions passed through discrete DC-
NNs.

Definition 4. The function c : R → C is referred to as a
cartoon function if it can be written as c = c1 + 1[a,b]c2,
where [a, b] ⊆ [0, 1] is a closed interval, and ci : R → C,
i = 1, 2, satisfies the Lipschitz property

|ci(x)− ci(y)| ≤ C|x− y|, ∀x, y ∈ R,

for some C > 0. Furthermore, we denote by

CKCART := {c1 + 1[a,b]c2 | |ci(x)− ci(y)| ≤ K|x− y|,
∀x, y ∈ R, i = 1, 2, ‖c2‖∞ ≤ K}

the class of cartoon functions of variation K > 0, and by

CN,KCART :=
{
f [n] = c(n/N), n ∈ {0, 1, . . . , N − 1}

∣∣∣
c = (c1 + 1[a,b]c2) ∈ CKCART with

a, b /∈
{

0,
1

N
, . . . ,

N − 1

N

}}
the class of sampled cartoon functions of length N and
variation K > 0.

We note that excluding the boundary points a, b of the in-
terval [a, b] from being sampling points n/N in the def-

2http://www.iro.umontreal.ca/%7Elisa/
twiki/bin/view.cgi/Public/BabyAISchool

http://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/BabyAISchool
http://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/BabyAISchool
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Figure 2. Left: A natural image (image credit: (Kutyniok & La-
bate, 2012b)) is typically governed by areas of little variation,
with the individual areas separated by edges that can be modeled
as curved singularities. Middle: Image of a handwritten digit.
Right: Pixel values corresponding to the dashed row in the mid-
dle image.

inition of CN,KCART is of conceptual importance (see Re-
mark D.1 in the Supplement). Moreover, our results can
easily be generalized to classes CN,KCART consisting of func-
tions f [n] = c(n/N) with c containing multiple “1-D
edges” (i.e., multiple discontinuity points) according to
c = c1 +

∑L
l=1 1[al,bl]c2 with ∩Ll=1[al, bl] = ∅. We also

note that CN,KCART reduces to the class of sampled Lipschitz-
continuous functions upon setting c2 = 0.

A sampled cartoon function in 2-D models, e.g., an image
acquired by a digital camera (see Fig. 2, middle); in 1-
D, f ∈ CN,KCART can be thought of as the pixels in a row
or column of this image (see Fig. 2 right, which shows a
cartoon function with 6 discontinuity points).

5. Analytical results
We analyze global and local feature vector properties with
globality pertaining to characteristics brought out by the
union of features across all network layers, and locality
identifying attributes made explicit in individual layers.

5.1. Global properties

Theorem 1. Let Ω =
(
(Ψd, ρd, Pd)

)
1≤d≤D be a module-

sequence. Assume that the Bessel bounds Bd > 0, the Lip-
schitz constants Ld > 0 of the non-linearities ρd, and the
Lipschitz constants Rd > 0 of the pooling operators Pd
satisfy

max
1≤d≤D

max{Bd, BdR2
dL

2
d} ≤ 1. (7)

i) The feature extractor ΦΩ is Lipschitz-continuous with
Lipschitz constant LΩ = 1, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, (8)

for all f, h ∈ HN1
, where the feature space norm is

defined as

|||ΦΩ(f)|||2 :=

D−1∑
d=0

∑
q∈Λd

1

||(U [q]f) ∗ χd||22. (9)

ii) If, in addition to (7), for all d ∈ {1, . . . , D − 1} the
non-linearities ρd and the pooling operators Pd sa-

tisfy ρd(0) = 0 and Pd(0) = 0 (as all non-linearities
and pooling operators in Sections 2.2.1 and 2.3.1,
apart from the logistic sigmoid non-linearity, do), then

|||ΦΩ(f)||| ≤ ‖f‖2, ∀f ∈ HN1 . (10)

iii) For every variation K > 0 and deformation Fτ of the
form

(Fτf)[n] : = c(n/N1 − τ(n/N1)), n ∈ IN1 , (11)

where τ : R → [−1, 1], the deformation sensitivity is
bounded according to

|||ΦΩ(Fτf)− ΦΩ(f)||| ≤ 4KN
1/2
1 ‖τ‖1/2∞ , (12)

for all f ∈ CN1,K
CART.

Proof. See Appendix C in the Supplement.

The Lipschitz continuity (8) guarantees that pairwise dis-
tances of input signals do not increase through feature ex-
traction. As an immediate implication of the Lipschitz con-
tinuity we get robustness of the feature extractor w.r.t. ad-
ditive bounded noise η ∈ HN1

in the sense of

|||ΦΩ(f + η)− ΦΩ(f)||| ≤ ‖η‖2,
for all f ∈ HN1

.

Remark 2. As detailed in the proof of Theorem 1, the Lip-
schitz continuity (8) combined with the deformation sensi-
tivity bound (see Proposition D.1 in the Supplement) for the
signal class under consideration, namely sampled cartoon
functions, establishes the deformation sensitivity bound
(12) for the feature extractor. This insight has important
practical ramifications as it shows that whenever we have
deformation sensitivity bounds for a signal class, we au-
tomatically get deformation sensitivity guarantees for the
corresponding feature extractor.

From (12) we can deduce a statement on the sensitivity of
ΦΩ w.r.t. translations on R. To this end, we first note that
setting τt(x) = t, x ∈ R, for t ∈ [−1, 1], (11) becomes

(Fτtf)[n] = c(n/N1 − t), n ∈ IN1
.

Particularizing (12) accordingly, we obtain

|||ΦΩ(Fτtf)− ΦΩ(f)||| ≤ 4KN
1/2
1 |t|1/2, (13)

which shows that small translations |t| of the underlying
analog signal c(x), x ∈ R, lead to small changes in the fea-
ture vector obtained by passing the resulting sampled signal
through a discrete DCNN. We shall say that (13) is a trans-
lation sensitivity bound. Analyzing the impact of deforma-
tions and translations over R on the discrete feature vec-
tor generated by the sampled analog signal closely models
real-world phenomena (e.g., the jittered acquisition of an
analog signal with a digital camera, where different values
of N1 in (11) correspond to different camera resolutions).
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We note that, while iii) in Theorem 1 is specific to cartoon
functions, i) and ii) apply to all signals in HN1 .

The strength of the results in Theorem 1 derives itself
from the fact that condition (7) on the underlying module-
sequence Ω is easily met in practice. To see this, we first
note that Bd is determined by the convolutional set Ψd, Ld
by the non-linearity ρd, andRd by the pooling operator Pd.
Condition (7) is met if

Bd ≤ min{1, R−2
d L−2

d }, ∀ d ∈ {1, 2, . . . , D}, (14)

which, if not satisfied by default, can be enforced sim-
ply by normalizing the elements in Ψd. Specifically, for
Cd := max{Bd, R2

dL
2
d} the set Ψ̃d := {C−1/2

d gλd
}λd∈Λd

has Bessel bound B̃d = Bd

Cd
and hence satisfies (14). While

this normalization does not have an impact on the results in
Theorem 1, there exists, however, a tradeoff between ener-
gy preservation and deformation (respectively translation)
sensitivity in ΦdΩ as detailed in the next section.

5.2. Local properties

Theorem 2. Let Ω =
(
(Ψd, ρd, Pd)

)
1≤d≤D be a module-

sequence with corresponding Bessel bounds Bd > 0, Lip-
schitz constants Ld > 0 of the non-linearities ρd, Lipschitz
constants Rd > 0 of the pooling operators Pd, and output-
generating atoms χd. Let further L0

Ω := ‖χ0‖1 and 3

LdΩ := ‖χd‖1
( d∏
k=1

BkL
2
kR

2
k

)1/2

, d ≥ 1. (15)

i) The features generated in the d-th network layer are
Lipschitz-continuous with Lipschitz constant LdΩ, i.e.,

|||ΦdΩ(f)− ΦdΩ(h)||| ≤ LdΩ‖f − h‖2, (16)

for all f, h ∈ HN1
, where |||ΦdΩ(f)|||2 :=∑

q∈Λd
1
||(U [q]f) ∗ χd||22.

ii) If the non-linearities ρk and the pooling operators Pk
satisfy ρk(0) = 0 and Pk(0) = 0, respectively, for all
k ∈ {1, . . . , d}, then

|||ΦdΩ(f)||| ≤ LdΩ‖f‖2, ∀f ∈ HN1
. (17)

iii) For all K > 0 and all τ : R → [−1, 1], the features
generated in the d-th network layer satisfy

|||ΦdΩ(Fτf)− ΦdΩ(f)||| ≤ 4LdΩKN
1/2‖τ‖1/2∞ , (18)

for all f ∈ CN1,K
CART, where Fτf is defined in (11).

iv) If the module-sequence employs sub-sampling, ave-
rage pooling, or max-pooling with corresponding
pooling factors Sd ∈ N, then

ΦdΩ(Tmf) = T m
S1...Sd

ΦdΩ(f), (19)

3We note that ‖χd‖1 in (15) can be upper-bounded (and hence
substituted) by Bd+1, see Remark E.1 in the Supplement.

for all f ∈ HN1
and all m ∈ Z with m

S1...Sd
∈ Z.

Here, TmΦdΩ(f) refers to element-wise application of
Tm, i.e., TmΦdΩ(f) := {Tmh | ∀h ∈ ΦdΩ(f)}.

Proof. See Appendix E in the Supplement.

One may be tempted to infer the global results (8), (10),
and (12) in Theorem 1 from the corresponding local results
in Theorem 2, e.g., the energy bound in (10) from (17)

according to |||ΦΩ(f)||| =
(∑D−1

d=0 |||ΦdΩ(f)|||2
)1/2

≤
√
D‖f‖2, where we employed LdΩ ≤ 1 owing to (7). This

would, however, lead to the “global” Lipschitz constant
LΩ = 1 in (8), (10), and (12) to be replaced by LΩ =

√
D

and thereby render the corresponding results much weaker.

Again, we emphasize that, while iii) in Theorem 2 is spe-
cific to cartoon functions, i), ii), and iv) apply to all signals
in HN1

.

For a fixed network layer d, the “local” Lipschitz constant
LdΩ determines the noise sensitivity of the features ΦdΩ(f)
according to

|||ΦdΩ(f + η)− ΦdΩ(f)||| ≤ LdΩ‖η‖2, (20)

where (20) follows from (16). Moreover, LdΩ via (18) also
quantifies the impact of deformations (or translations when
τt(x) = t, x ∈ R, for t ∈ [−1, 1]) on the feature vec-
tor. In practice, it may be desirable to have the features ΦdΩ
become more robust to additive noise and less deformation-
sensitive (respectively, translation-sensitive) as we progress
deeper into the network. Formally, this vertical sensitivity
reduction can be induced by ensuring that Ld+1

Ω < LdΩ.

Thanks to LdΩ =
‖χd‖1B1/2

d LdRd

‖χd−1‖1 Ld−1
Ω , this can be ac-

complished by choosing the module-sequence such that
‖χd‖1B1/2

d LdRd < ‖χd−1‖1. Note, however, that ow-
ing to (17) this will also reduce the signal energy con-
tained in the features ΦdΩ(f). We therefore have a tradeoff
between deformation (respectively translation) sensitivity
and energy preservation. Having control over this tradeoff
through the choice of the module-sequence Ω may come in
handy in practice.

For average pooling with uniform weights αdk = 1
Sd

,
k = 0, . . . , Sd − 1 (noting that the corresponding Lip-
schitz constant is Rd = S

−1/2
d , see Section 2.3.1), we

get LdΩ = ‖χd‖1
(∏d

k=1
BkL

2
k

Sk

)1/2

, which illustrates that
pooling can have an impact on the sensitivity and energy
properties of ΦdΩ.

We finally turn to interpreting the translation covariance re-
sult (19). Owing to the condition m

S1...Sd
∈ Z, we get trans-

lation covariance only on the rough grid induced by the
product of the pooling factors. In the absence of pooling,
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i.e., Sk = 1, for k ∈ {1, . . . , d}, we obtain translation co-
variance w.r.t. the fine grid the input signal f ∈ HN1 lives
on.

Remark 3. We note that ScatNets (Bruna & Mallat, 2013)
are translation-covariant on the rough grid induced by the
factor 2J corresponding to the coarsest wavelet scale. Our
result in (19) is hence in the spirit of (Bruna & Mallat,
2013) with the difference that the grid in our case is in-
duced by the pooling factors Sk.

6. Experiments4

We consider the problem of handwritten digit classification
and evaluate the performance of the feature extractor ΦΩ in
combination with a support vector machine (SVM). The re-
sults we obtain are competitive with the state-of-the-art in
the literature. The second line of experiments we perform
assesses the importance of the features extracted by ΦΩ in
facial landmark detection and in handwritten digit classifi-
cation, using random forests (RF) for regression and clas-
sification, respectively. Our results are based on a DCNN
with different non-linearities and pooling operators, and
with tensorized (i.e., separable) wavelets as filters, sensitive
to 3 directions (horizontal, vertical, and diagonal). Further-
more, we generate outputs in all layers through low-pass
filtering. Circular convolutions with the 1-D filters under-
lying the tensorized wavelets are efficiently implemented
using the algorithme à trous (Holschneider et al., 1989).

To reduce the dimension of the feature vector, we com-
pute features along frequency decreasing paths only (Bruna
& Mallat, 2013), i.e., for every node U [q]f , q ∈
Λd−1

1 , we retain only those child nodes Ud[λd]U [q]f =
Pd
(
ρd((U [q]f)∗gλd

)
)

that correspond to wavelets gλd
with

scales larger than the maximum scale of the wavelets used
to get U [q]f . We refer to (Bruna & Mallat, 2013) for a de-
tailed justification of this approach for scattering networks.

6.1. Handwritten digit classification

We use the MNIST dataset of handwritten digits (LeCun &
Cortes, 1998) which comprises 60,000 training and 10,000
test images of size 28×28. We setD = 3, and compare dif-
ferent network configurations, each defined by a single mo-
dule (i.e., we use the same filters, non-linearity, and pool-
ing operator in all layers). Specifically, we consider Haar
wavelets and reverse biorthogonal 2.2 (RBIO2.2) wavelets
(Mallat, 2009), both with J = 3 scales, the non-linearities
described in Section 2.2.1, and the pooling operators de-
scribed in Section 2.3.1 (with S1 = 1 and S2 = 2). We
use a SVM with radial basis function (RBF) kernel for
classification. To reduce the dimension of the feature vec-

4Code available at http://www.nari.ee.ethz.ch/
commth/research/

Haar RBIO2.2
abs ReLU tanh LogSig abs ReLU tanh LogSig

n.p. 0.55 0.57 1.41 1.49 0.50 0.54 1.01 1.18
sub. 0.60 0.58 1.25 1.45 0.59 0.62 1.04 1.13
max. 0.61 0.60 0.68 0.76 0.55 0.56 0.71 0.75
avg. 0.57 0.58 1.26 1.44 0.51 0.60 1.04 1.18

Table 1. Classification error in percent for handwritten digit clas-
sification using different configurations of wavelet filters, non-
linearities, and pooling operators (sub.: sub-sampling; max.:
max-pooling; avg.: average-pooling; n.p.: no pooling).

tors from 18,424 (or 50,176, for the configurations without
pooling) down to 1000, we employ the supervised orthog-
onal least squares feature selection procedure described in
(Oyallon & Mallat, 2014). The penalty parameter of the
SVM and the localization parameter of the RBF kernel are
selected via 10-fold cross-validation for each combination
of wavelet filter, non-linearity, and pooling operator.

Table 1 shows the resulting classification errors on the test
set (obtained for the SVM trained on the full training set).
Configurations employing RBIO2.2 wavelets tend to yield
a marginally lower classification error than those using
Haar wavelets. For the tanh and LogSig non-linearities,
max-pooling leads to a considerably lower classification
error than other pooling operators. The configurations
involving the modulus and ReLU non-linearities achieve
classification accuracy competitive with the state-of-the-
art (Bruna & Mallat, 2013) (class. err.: 0.43%), which
is based on directional non-separable wavelets with 6 di-
rections without intra-layer pooling. This is interesting as
the separable wavelet filters employed here can be imple-
mented more efficiently.

6.2. Feature importance evaluation

In this experiment, we investigate the “importance” of the
features generated by ΦΩ corresponding to different lay-
ers, wavelet scales, and directions in two different learning
tasks, namely, facial landmark detection and handwritten
digit classification. The primary goal of this experiment
is to illustrate the practical relevance of the notion of lo-
cal properties of ΦΩ as established in Section 5.2. For fa-
cial landmark detection we employ a RF regressor and for
handwritten digit classification a RF classifier (Breiman,
2001). In both cases, we fix the number of trees to 30
and select the tree depth using out-of-bag error estimates
(noting that increasing the number of trees does not sig-
nificantly increase the accuracy). The impurity measure
used for learning the node tests is the mean square er-
ror for facial landmark detection and the Gini impurity for
handwritten digit classification. In both cases, feature im-
portance is assessed using the Gini importance (Breiman
et al., 1984), averaged over all trees. The Gini importance
I(θ, T ) of feature θ in the (trained) tree T is defined as

http://www.nari.ee.ethz.ch/commth/research/
http://www.nari.ee.ethz.ch/commth/research/
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I(θ, T ) =
∑
`∈T : ϕ(`)=θ

n`

ntot
(̂ı`−

n`L

n`
ı̂`L−

n`R

n`
ı̂`R), where

ϕ(`) denotes the feature determined in the training phase
for the test at node `, n` is the number of training samples
passed through node `, ntot =

∑
`∈T n`, ı̂` is the impu-

rity at node `, and `L and `R denote the left and right child
node, respectively, of node `. For the feature extractor ΦΩ

we set D = 4, employ Haar wavelets with J = 3 scales
and the modulus non-linearity in every network layer, no
pooling in the first layer and average pooling with uniform
weights 1/S2

d , Sd = 2, in layers d = 2, 3.

Facial landmark detection. We use the Caltech 10,000
Web Faces data base (Angelova et al., 2005). Each of the
7092 images in the data base depicts one or more faces in
different contexts (e.g., portrait images, groups of people).
The data base contains annotations of the positions of eyes,
nose, and mouth for at least one face per image. The lear-
ning task is to estimate the positions of these facial land-
marks. The annotations serve as ground truth for training
and testing. We preprocess the data set as follows. The
patches containing the faces are extracted from the images
using the Viola-Jones face detector (Viola & Jones, 2004).
After discarding false positives, the patches are converted
to grayscale and resampled to size 120 × 120 (using lin-
ear interpolation), before feeding them to the feature ex-
tractor ΦΩ. This procedure yields a dataset containing a
total of 8776 face images. We select 80% of the images
uniformly at random to form a training set and use the
remaining images for testing. We train a separate RF for
each facial landmark. Following (Dantone et al., 2012) we
report the localization error, i.e., the `2-distance between
the estimated and the ground truth landmark positions, on
the test set as a fraction of the (true) inter-ocular distance.
The errors obtained are: left eye: 0.062; right eye: 0.064;
nose; 0.080, mouth: 0.095. As an aside, we note that these
values are comparable with the ones reported in (Dantone
et al., 2012) for a conditional RF using patch comparison
features (evaluated on a different dataset and a larger set of
facial landmarks).

Handwritten digit classification. For this experiment,
we again rely on the MNIST dataset. The training set is
obtained by sampling uniformly at random 1, 000 images
per digit from the MNIST training dataset and we use the
complete MNIST test set. We train two RFs, one based on
unmodified images, and the other one based on images sub-
ject to a random uniform displacement of at most 4 pixels in
(positive and negative) x and y direction to study the impact
of offsets on feature importance. The resulting RFs achieve
a classification error of 4.2% and 9.6%, respectively.

Discussion. Figure 3 shows the cumulative feature im-
portance (per triplet of layer index, wavelet scale, and di-
rection, averaged over all trees in the respective RF) in
handwritten digit classification and in facial landmark de-
tection. Table 2 shows the corresponding cumulative fea-
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Figure 3. Average cumulative feature importance and standard
error for facial landmark detection and handwritten digit classi-
fication. The labels on the horizontal axis indicate layer index
d/wavelet direction (0: horizontal, 1: vertical, 2: diagonal).

left eye right eye nose mouth digits disp. digits

Layer 0 0.020 0.023 0.016 0.014 0.046 0.004
Layer 1 0.629 0.646 0.576 0.490 0.426 0.094
Layer 2 0.261 0.236 0.298 0.388 0.337 0.280
Layer 3 0.090 0.095 0.110 0.108 0.192 0.622

Table 2. Cumulative feature importance per layer. Columns 1–4:
facial landmark detection. Columns 5 and 6: handwritten digit
classification.

ture importance for each layer.

For facial landmark detection, the features in layer 1 clearly
have the highest importance, and the feature importance
decreases with increasing layer index d. For handwritten
digit classification using the unshifted MNIST images, the
cumulative importance of the features in the second/third
layer relative to those in the first layer is considerably
higher than in facial landmark detection (see Table 2). For
the translated MNIST images, the importance of the fea-
tures in the second/third layer is significantly higher than
those in the 0-th and in the first layer. An explanation for
this observation could be as follows: In a classification task
small sensitivity to translations is beneficial. Now, accord-
ing to our theory (see Section 5.2) translation sensitivity,
indeed, decreases with increasing layer index for average
pooling as used here. For localization of landmarks, on the
other hand, the RF needs features that are covariant on the
fine grid of the input image thus favoring features in the
layers closer to the root.
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A. Appendix: Additional numerical results
A.1. Handwritten digit classification

For the handwritten digit classification experiment de-
scribed in Section 6.1, Table 3 shows the classification error
for Daubechies wavelets with 2 vanishing moments (DB2).

DB2
abs ReLU tanh LogSig

n.p. 0.54 0.51 1.29 1.40
sub. 0.60 0.58 1.16 1.34
max. 0.57 0.57 0.75 0.67
avg. 0.52 0.61 1.16 1.27

Table 3. Classification errors in percent for handwritten digit
classification using DB2 wavelet filters, different non-linearities,
and different pooling operators (sub.: sub-sampling; max.: max-
pooling; avg.: average-pooling; n.p.: no pooling).

A.2. Feature importance evaluation

For the feature importance experiment described in Section
6.2, Figure 4 shows the cumulative feature importance (per
triplet of layer index, wavelet scale, and direction, averaged
over all trees in the respective RF) in facial landmark de-
tection (right eye and mouth).

B. Appendix: Lipschitz continuity of pooling
operators

We verify the Lipschitz property

‖P (f)− P (h)‖2 ≤ R‖f − h‖2, ∀f, h ∈ HN ,

for the pooling operators in Section 2.3.1.

Sub-sampling: Pooling by sub-sampling is defined as

P : HN → HN/S , P (f)[n] = f [Sn], n ∈ IN/S ,

where N/S ∈ N. Lipschitz continuity with R = 1 follows
from

‖P (f)− P (h)‖22 =
∑

n∈IN/S

|f [Sn]− h[Sn]|2

≤
∑
n∈IN

|f [n]− h[n]|2 = ‖f − h‖22, ∀f, h ∈ HN .

Averaging: Pooling by averaging is defined as

P : HN → HN/S , P (f)[n] =

Sn+S−1∑
k=Sn

αk−Snf [k],

for n ∈ IN/S , where N/S ∈ N. We start by setting α′ :=
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Figure 4. Average cumulative feature importance and standard er-
ror for facial landmark detection. The labels on the horizontal axis
indicate layer index d/wavelet direction (0: horizontal, 1: vertical,
2: diagonal).
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maxk∈{0,...,S−1} |αk|. Then,

‖P (f)− P (h)‖22

=
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

αk−Sn(f [k]− h[k])
∣∣∣2

≤
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

α′|f [k]− h[k]|
∣∣∣2

≤ α′2S
∑

n∈IN/S

Sn+S−1∑
k=Sn

∣∣∣f [k]− h[k]
∣∣∣2 (B.1)

= α′2S
∑
n∈IN

∣∣∣f [k]− h[k]
∣∣∣2 = α′2S‖f − h‖22,

where we used
∑
k∈IS |f [k]−h[k]| ≤ S1/2‖f−h‖2, f, h ∈

HS , to get (B.1), see, e.g., (Golub & Van Loan, 2013).

Maximization: Pooling by maximization is defined as

P : HN → HN/S , P (f)[n] = max
k∈{Sn,...,Sn+S−1}

|f [k]|,

for n ∈ IN/S , where N/S ∈ N. We have

‖P (f)− P (h)‖22
=

∑
n∈IN/S

∣∣ max
k∈{Sn,...,Sn+S−1}

|f [k]|

− max
k∈{Sn,...,Sn+S−1}

|h[k]|
∣∣2

≤
∑

n∈IN/S

max
k∈{Sn,...,Sn+S−1}

∣∣f [k]− h[k]
∣∣2 (B.2)

≤
∑

n∈IN/S

S−1∑
k=0

|f [Sn+ k]− h[Sn+ k]|2 (B.3)

= ‖f − h‖22,

where we employed the reverse triangle inequality∣∣‖f‖∞ − ‖h‖∞∣∣ ≤ ‖f − h‖∞, f, h ∈ HS , to get (B.2),
and in (B.3) we used ‖f‖∞ ≤ ‖f‖2, f ∈ HS , see, e.g.,
(Golub & Van Loan, 2013).

C. Appendix: Proof of Theorem 1
We start by proving i). The key idea of the proof is—
similarly to the proof of Proposition 4 in (Wiatowski &
Bölcskei, 2015)—to employ telescoping series arguments.
For ease of notation, we let fq := U [q]f and hq := U [q]h,
for f, h ∈ HN1

, q ∈ Λd1. With (9) we have

|||ΦΩ(f)− ΦΩ(h)|||2 =

D−1∑
d=0

∑
q∈Λd

1

||(fq − hq) ∗ χd||22︸ ︷︷ ︸
=:ad

.

The key step is then to show that ad can be upper-bounded
according to

ad ≤ bd − bd+1, d = 0, . . . , D − 1, (C.1)

with bd :=
∑
q∈Λd

1
‖fq − hq‖22, for d = 0, . . . , D, and to

note that

D−1∑
d=0

ad ≤
D−1∑
d=0

(bd − bd+1) = b0 − bD︸︷︷︸
≥0

≤ b0

=
∑
q∈Λ0

1

‖fq − hq‖22 = ‖f − h‖22,

which then yields (8). Writing out (C.1), it follows that we
need to establish

∑
q∈Λd

1

‖(fq − hq) ∗ χd‖22 ≤
∑
q∈Λd

1

||fq − hq‖22

−
∑

q∈Λd+1
1

‖fq − hq‖22, d = 0, . . . , D − 1. (C.2)

We start by examining the second sum on the right-hand
side (RHS) in (C.2). Every path

q̃ ∈ Λd+1
1 = Λ1 × · · · × Λd︸ ︷︷ ︸

=Λd
1

×Λd+1

of length d + 1 can be decomposed into a path q ∈ Λd1
of length d and an index λd+1 ∈ Λd+1 according to q̃ =
(q, λd+1). Thanks to (5) we have U [q̃] = U [(q, λd+1)] =
Ud+1[λd+1]U [q], which yields

∑
q̃∈Λd+1

1

‖fq̃ − hq̃‖22 =
∑
q∈Λd

1

∑
λd+1∈Λd+1

‖Ud+1[λd+1]fq

− Ud+1[λd+1]hq‖22. (C.3)

Substituting (C.3) into (C.2) and rearranging terms, we ob-
tain

∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22 (C.4)

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

(C.5)

≤
∑
q∈Λd

1

||fq − hq‖22, d = 0, . . . , D − 1. (C.6)
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We next note that the sum over the index set Λd+1 inside
the brackets in (C.4)-(C.5) satisfies∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22

=
∑

λd+1∈Λd+1

‖Pd+1

(
ρd+1(fq ∗ gλd+1

)
)

− Pd+1

(
ρd+1(hq ∗ gλd+1

)
)
‖22

≤ R2
d+1

∑
λd+1∈Λd+1

‖ρd+1(fq ∗ gλd+1
) (C.7)

− ρd+1(hq ∗ gλd+1
)‖22 (C.8)

≤ R2
d+1L

2
d+1

∑
λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22, (C.9)

where we employed the Lipschitz continuity of Pd+1 in
(C.7)-(C.8) and the Lipschitz continuity of ρd+1 in (C.9).
Substituting the sum over the index set Λd+1 inside the
brackets in (C.4)-(C.5) by the upper bound (C.9) yields∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

≤
∑
q∈Λd

1

max{1, R2
d+1L

2
d+1}

(
‖(fq − hq) ∗ χd‖22 (C.10)

+
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22
)
, (C.11)

for d = 0, . . . , D − 1. As {gλd+1
}λd+1∈Λd+1

∪ {χd} are
atoms of the convolutional set Ψd+1, and fq, hq ∈ HNd+1

,
we have

‖(fq − hq) ∗ χd‖22 +
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22

≤ Bd+1‖fq − hq‖22,

which, when used in (C.10)-(C.11) yields∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

≤
∑
q∈Λd

1

max{Bd+1, Bd+1R
2
d+1L

2
d+1}‖fq − hq‖22,

(C.12)

for d = 0, . . . , D − 1. Finally, invoking (7) in (C.12) we
get (C.4)-(C.6) and hence (C.1). This completes the proof
of i).

We continue with ii). The key step in establishing (10)
is to show that for ρd(0) = 0 and Pd(0) = 0, for

d ∈ {1, . . . , D − 1}, the feature extractor ΦΩ satisfies
ΦΩ(0) = 0, and to employ (8) with h = 0 which yields

|||Φ(f)||| ≤ ‖f‖,

for f ∈ HN1
. It remains to prove that ΦΩ(h) = 0 for

h = 0. For h = 0, the operator Ud, d ∈ {1, 2, . . . , D},
defined in (4) satisfies

(Ud[λd]h) = Pd
(
ρd(h ∗ gλd︸ ︷︷ ︸

=0

)

︸ ︷︷ ︸
=0

)
︸ ︷︷ ︸

=0

,

for λd ∈ Λd, by assumption. With the definition of U [q] in
(5) this then yields (U [q]h) = 0 for h = 0 and all q ∈ Λd1.
ΦΩ(0) = 0 finally follows from

ΦΩ(h) =

D−1⋃
d=0

{ (
U [q]h

)
∗ χd︸ ︷︷ ︸

=0

}
q∈Λd

1
= 0. (C.13)

We proceed to iii). The proof of the deformation sensitivity
bound (12) is based on two key ingredients. The first one
is the Lipschitz continuity result stated in (8). The second
ingredient, stated in Proposition D.1 in Appendix D, is an
upper bound on the deformation error ‖f − Fτf‖2 given
by

‖f − Fτf‖2 ≤ 4KN
1/2
1 ‖τ‖1/2∞ , (C.14)

where f ∈ CN1,K
CART . We now show how (8) and (C.14) can

be combined to establish (12). To this end, we first apply
(8) with h := (Fτf) to get

|||ΦΩ(f)− ΦΩ(Fτf)||| ≤ ‖f − Fτf‖2, (C.15)

for f ∈ CN1,K
CART ⊆ HN1

, N1 ∈ N, and K > 0, and then re-
place the RHS of (C.15) by the RHS of (C.14). This com-
pletes the proof of iii).

D. Appendix: Proposition D.1
Proposition D.1. For every N ∈ N, every K > 0, and
every τ : R→ [−1, 1], we have

‖f − Fτf‖2 ≤ 4KN1/2‖τ‖1/2∞ , (D.1)

for all f ∈ CN,KCART.

Remark D.1. As already mentioned at the end of Section 4,
excluding the interval boundary points a, b in the definition
of sampled cartoon functions CN,KCART (see Definition 4) is
necessary for technical reasons. Specifically, without im-
posing this exclusion, we can not expect to get deformation
sensitivity results of the form (D.1). This can be seen as
follows. Let us assume that we seek a bound of the form
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‖f − Fτf‖2 ≤ CN,K‖τ‖α∞, for some CN,K > 0 and
some α > 0, that applies to all f [n] = c(n/N), n ∈ IN ,
with c ∈ CKCART. Take τ(x) = 1/N , in which case the
deformation (Fτf)[n] = c(n/N − 1/N) amounts to a
simple translation by 1/N and ‖τ‖∞ = 1/N ≤ 1. Let
c(x) = 1[0,2/N ](x). Then c ∈ CKCART for K = 1 and
‖f − Fτf‖2 =

√
2, which obviously does not decay with

‖τ‖α∞ = N−α for some α > 0. We note that this phe-
nomenon occurs only in the discrete case.

Proof. The proof of (D.1) is based on judiciously combi-
ning deformation sensitivity bounds for the sampled com-
ponents c1(n/N), c2(n/N), n ∈ IN , in (c1 + 1[a,b]c2) ∈
CKCART, and the sampled indicator function 1[a,b](n/N),
n ∈ IN . The first bound, stated in Lemma D.1 below,
reads

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞, (D.2)

and applies to discrete-time signals f [n] = f(n/N), n ∈
IN , with f : R→ C satisfying the Lipschitz property with
Lipschitz constant C. The second bound we need, stated in
Lemma D.2 below, is given by

‖1N[a,b] − Fτ1
N
[a,b]‖2 ≤ 2N1/2‖τ‖1/2∞ , (D.3)

and applies to sampled indicator functions 1N[a,b][n] :=

1[a,b](n/N), n ∈ IN , with a, b /∈ {0, 1
N , . . . ,

N−1
N }. We

now show how (D.2) and (D.3) can be combined to estab-
lish (D.1). For a sampled cartoon function f ∈ CN,KCART,
i.e.,

f [n] = c1(n/N) + 1[a,b](n/N)c2(n/N)

=: f1[n] + 1N[a,b][n]f2[n], n ∈ IN ,

we have

‖f − Fτf‖2 ≤ ‖f1 − Fτf1‖2 + ‖1N[a,b](f2 − Fτf2)‖2
+ ‖(1N[a,b] − Fτ1

N
[a,b])(Fτf2)‖2 (D.4)

≤ ‖f1 − Fτf1‖2 + ‖f2 − Fτf2‖2
+ ‖1N[a,b] − Fτ1

N
[a,b]‖2‖Fτf2‖∞,

where in (D.4) we used(
Fτ (1N[a,b]f2)

)
[n] = (1[a,b]c2)(n/N − τ(n/N))

= 1[a,b](n/N − τ(n/N))c2((n/N − τ(n/N)))

= (Fτ1
N
[a,b])[n](Fτf2)[n].

With the upper bounds (D.2) and (D.3), invoking proper-
ties of CN,KCART (namely, (i) c1, c2 satisfy the Lipschitz pro-
perty with Lipschitz constant C = K and hence f1[n] =
c1(n/N), f2[n] = c2(n/N), n ∈ IN , satisfy (D.2) with
C = K, and (ii) ‖Fτf2‖∞ = supn∈IN |(Fτf2)[n]| =

supn∈IN |c2(n/N − τ(n/N))| ≤ supx∈R |c2(x)| =
‖c2‖∞ ≤ K), this yields

‖f − Fτf‖2 ≤ 2KN1/2 ‖τ‖∞ + 2KN1/2‖τ‖1/2∞
≤ 4KN1/2‖τ‖1/2∞ ,

where in the last step we used ‖τ‖∞ ≤ ‖τ‖1/2∞ , which is
thanks to the assumption ‖τ‖∞ ≤ 1. This completes the
proof of (D.1).

It remains to establish (D.2) and (D.3).
Lemma D.1. Let c : R → C be Lipschitz-continuous with
Lipschitz constantC. Let further f [n] := c(n/N), n ∈ IN .
Then,

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞.

Proof. Invoking the Lipschitz property of c according to

‖f − Fτf‖22 =
∑
n∈IN

|f [n]− (Fτf)[n]|2

=
∑
n∈IN

|c(n/N)− c(n/N − τ(n/N))|2

≤ C2
∑
n∈IN

|τ(n/N)|2 ≤ C2N‖τ‖2∞

completes the proof.

We continue with a deformation sensitivity result for sam-
pled indicator functions 1[a,b](x).
Lemma D.2. Let [a, b] ⊆ [0, 1] and set 1N[a,b][n] :=

1[a,b](n/N), n ∈ IN , with a, b /∈ {0, 1
N , . . . ,

N−1
N }. Then,

we have

‖1N[a,b] − Fτ1
N
[a,b]‖2 ≤ 2N1/2‖τ‖1/2∞ .

Proof. In order to upper-bound

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|1N[a,b][n]− (Fτ1
N
[a,b])[n]|2

=
∑
n∈IN

|1[a,b](n/N)− 1[a,b](n/N − τ(n/N))|2,

we first note that the summand h(n) := |1[a,b](n/N) −
1[a,b](n/N − τ(n/N))|2 satisfies h(n) = 1, for n ∈ S,
where

S :=
{
n ∈ IN

∣∣∣ n
N
∈ [a, b] and

n

N
− τ
( n
N

)
/∈ [a, b]

}
∪
{
n ∈ IN

∣∣∣ n
N

/∈ [a, b] and
n

N
− τ
( n
N

)
∈ [a, b]

}
,

and h(n) = 0, for n ∈ IN\S. Thanks to a, b /∈
{0, 1

N , . . . ,
N−1
N }, we have S ⊆ Σ, where

Σ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ < ‖τ‖∞}

∪
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ < ‖τ‖∞}.
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The cardinality of the set Σ can be upper-bounded by
2 2‖τ‖∞

1/N , which then yields

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|h(n)|2

=
∑
n∈S

1 ≤
∑
n∈Σ

1 ≤ 4N‖τ‖∞. (D.5)

This completes the proof.

Remark D.2. For general a, b ∈ [0, 1], i.e., when we drop
the assumption a, b /∈ {0, 1

N , . . . ,
N−1
N }, it follows that

S ⊆ Σ′, where

Σ′ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ ≤ ‖τ‖∞}

∪
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ ≤ ‖τ‖∞}.

Noting that the cardinality of Σ′ can be upper-bounded by
2
( 2‖τ‖∞

1/N + 1
)

= 4N‖τ‖∞ + 2, this then yields (similarly
to (D.5))

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 ≤

∑
n∈Σ

1 ≤ 4N‖τ‖∞ + 2,

which shows that the deformation error—for general a, b ∈
[0, 1]—does not decay with ‖τ‖α∞ for some α > 0 (see also
the example in Remark D.1).

E. Appendix: Theorem 2
We start by establishing i). For ease of notation, again, we
let fq := U [q]f and hq := U [q]h, for f, h ∈ HN1

, q ∈ Λd1.
We have

|||ΦdΩ(f)− ΦdΩ(h)|||2 =
∑
q∈Λd

1

||(fq − hq) ∗ χd||22 (E.1)

≤ ‖χd‖21
∑
q∈Λd

1

||(fq − hq)||22︸ ︷︷ ︸
=:ad

, (E.2)

where (E.2) follows by Young’s inequality (Folland, 2015).

Remark E.1. We emphasize that (E.1) can also be upper-
bounded byBd+1

∑
q∈Λd

1
||(fq−hq)||22, which follows from

the fact that {gλd+1
}λd+1∈Λd+1

∪ {χd} are atoms of the
convolutional set Ψd+1 with Bessel bound Bd+1. Hence,
one can substitute ‖χd‖1 in (15) by Bd+1.

The key step is then to show that ad can be upper-bounded
according to

ak ≤ (BkL
2
kR

2
k)ak−1, k = 1, . . . , d, (E.3)

and to note that

ad ≤ (BdL
2
dR

2
d)ad−1 ≤ · · · ≤

( d∏
k=1

BkL
2
kR

2
k

)
a0

=
( d∏
k=1

BkL
2
kR

2
k

) ∑
q∈Λ0

1

‖fq − hq‖22

=
( d∏
k=1

BkL
2
kR

2
k

)
‖f − h‖22,

which yields (16). We now establish (E.3). Every path

q̃ ∈ Λk1 = Λ1 × · · · × Λk−1︸ ︷︷ ︸
=Λk−1

1

×Λk

of length k can be decomposed into a path q ∈ Λk−1
1

of length k − 1 and an index λk ∈ Λk according to
q̃ = (q, λk). Thanks to (5) we have U [q̃] = U [(q, λk)] =
Uk[λk]U [q], which yields∑

q̃∈Λk
1

‖fq̃ − hq̃‖22 =
∑

q∈Λk−1
1

∑
λk∈Λk

‖Uk[λk]fq

− Uk[λk]hq‖22. (E.4)

We next note that the term inside the sums on the RHS in
(E.4) satisfies

‖Uk[λk]fq − Uk[λk]hq‖22
= ‖Pk

(
ρk(fq ∗ gλk

)
)
− Pk

(
ρk(hq ∗ gλk

)
)
‖22

≤ L2
kR

2
k‖(fq − hq) ∗ gλk

‖22, (E.5)

where we used the Lipschitz continuity of Pk and ρk with
Lipschitz constants Rk > 0 and Lk > 0, respectively. As
{gλk
}λk∈Λk

∪ {χk−1} are the atoms of the convolutional
set Ψk, and fq, hq ∈ HNk

by (5), we have∑
λk∈Λk

‖(fq − hq) ∗ gλk
‖22 ≤ Bk‖fq − hq‖22,

which, when used in (E.5) together with (E.4), yields∑
q̃∈Λk

1

‖fq̃ − hq̃‖22 ≤ BkL2
kR

2
k

∑
q∈Λk−1

1

‖fq − hq‖22,

and hence establishes (E.3), thereby completing the proof
of i).

We now turn to ii). The proof of (17) follows—as in the
proof of ii) in Theorem 1 in Appendix C—from (16) to-
gether with ΦdΩ(h) = {(U [q]h) ∗ χd}q∈Λd

1
= 0 for h = 0,

see (C.13).

We continue with iii). The proof of the deformation sen-
sitivity bound (18) is based on two key ingredients. The
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first one is the Lipschitz continuity result in (16). The sec-
ond ingredient is, again, the deformation sensitivity bound
(D.1) stated in Proposition D.1 in Appendix D. Combining
(16) and (D.1)—as in the proof of iii) in Theorem 1 in Ap-
pendix C—then establishes (18) and completes the proof
of iii).

We proceed to iv). For ease of notation, again, we let fq :=
U [q]f , for f ∈ HN1

, q ∈ Λd1. Thanks to (5), we have
fq ∈ HNd+1

, for q ∈ Λd1. The key step in establishing (19)
is to show that the operator Uk, k ∈ {1, 2, . . . , d}, defined
in (4) satisfies the relation

(Uk[λk]Tmf) = Tm/Sk
(Uk[λk]f), (E.6)

for f ∈ HNk
, m ∈ Z with m

Sk
∈ Z, and λk ∈ Λk. With the

definition of U [q] in (5) this then yields

(U [q]Tmf) = Tm/(S1···Sd)(U [q]f), (E.7)

for f ∈ HN1 , m ∈ Z with m
S1...Sd

∈ Z, and q ∈ Λd1. The
identity (19) is then a direct consequence of (E.7) and the
translation-covariance of the circular convolution operator
(which holds thanks to m

S1...Sd
∈ Z):

ΦdΩ(Tmf) =
{(
U [q]Tmf

)
∗ χd

}
q∈Λd

1

=
{(
Tm/(S1···Sd)U [q]f

)
∗ χd

}
q∈Λd

1

=
{
Tm/(S1···Sd)

(
(U [q]f) ∗ χd

)}
q∈Λd

1

= Tm/(S1···Sd)Φ
d
Ω(f),

for f ∈ HN1
and m ∈ Z with m

S1...Sd
∈ Z. It remains to

establish (E.6):

(Uk[λk]Tmf) =
(
Pk
(
ρk((Tmf) ∗ gλk

)
))

=
(
Pk
(
ρk(Tm(f ∗ gλk

))
))

(E.8)

=
(
Pk
(
Tm(ρk(f ∗ gλk

))
))
, (E.9)

where in (E.8) we used the translation covariance of the cir-
cular convolution operator (which holds thanks to m ∈ Z),
and in (E.9) we used the fact that point-wise non-linearities
commute with the translation operator thanks to

(ρkTmf)[n] = ρk((Tmf)[n])

= ρk(f [n−m]) = (Tmρkf)[n],

for f ∈ HNk
, n ∈ INk

, and m ∈ Z. Next, we note
that the pooling operators Pk in Section 2.3.1 (namely,
sub-sampling, average pooling, and max-pooling) can all
be written as (Pkf)[n] = (P ′kf)[Skn], for some P ′k that
commutes with the translation operator, namely, for (i)
sub-sampling (P ′kf)[n] = f [n], with (P ′kTmf)[n] =

(Tmf)[n] = f [n−m] = (TmP
′
kf)[n], (ii) average pooling

(P ′kf)[n] =
∑n+Sk−1
l=n αl−nf [l] with

(P ′kTmf)[n] =

n+Sk−1∑
l=n

αl−nf [l −m]

=

(n−m)+Sk−1∑
l′=(n−m)

αl−(n−m)f [l′]

= (TmP
′
kf)[n],

and for (iii) max-pooling (P ′kf)[n] =
maxl∈{n,...,n+Sk−1} |f [l]| with

(P ′kTmf)[n] = max
l∈{n,...,n+Sk−1}

|f [l −m]|

= max
(l−m)∈{n−m,...,(n−m)+Sk−1}

|f [l −m]|

= max
l′∈{(n−m),...,(n−m)+Sk−1}

|f [l′]|

= (TmP
′
kf)[n],

in all three cases for f ∈ HNk
, n ∈ INk

, and m ∈ Z. This
then yields

(PkTmf)[n] = (P ′kTmf)[Skn] = (TmP
′
kf)[Skn]

= P ′k(f)[Skn−m]

= P ′k(f)[Sk(n− S−1
k m)]

= Pk(f)[n− S−1
k m]

= (Tm/Sk
Pkf)[n], (E.10)

for f ∈ HNk
and n ∈ INk+1

. Here, we used m/Sk ∈
Z, which is by assumption. Substituting (E.10) into (E.9)
finally yields

(Uk[λk]Tmf) = Tm/Sk
Uk[λk]f,

for f ∈ HNk
, m ∈ Z with m

Sk
∈ Z, and λk ∈ Λk. This

completes the proof of (E.6) and hence establishes (19).


