Fading relay channels: Performance limits and space-time signal design

Authors

Rohit U. Nabar, Helmut Bölcskei, and Felix W. Kneubühler

Reference

IEEE Journal on Selected Areas in Communications, Vol. 22, No. 6, pp. 1099-1109, Aug. 2004

DOI: 10.1109/JSAC.2004.830922

[BibTeX, LaTeX, and HTML Reference]

Abstract

Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination and relay terminals are each equipped with single antenna transceivers. We consider three different TDMA-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of co-located antennas as well as appropriate power control rules. Consequently space-time codes designed for the case of co-located multi-antenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.

Keywords

Relay channels, fading, cooperative diversity, protocols, capacity, nonorthogonal amplify-and-forward


Download this document:

 

Copyright Notice: © 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.