Robust subspace clustering via thresholding


Reinhard Heckel and Helmut Bölcskei


IEEE Transactions on Information Theory, Vol. 61, No. 11, pp. 6320-6342, Nov. 2015

DOI: 10.1109/TIT.2015.2472520

[BibTeX, LaTeX, and HTML Reference]


The problem of clustering noisy and incompletely observed high-dimensional data points into a union of low-dimensional subspaces and a set of outliers is considered. The number of subspaces, their dimensions, and their orientations are assumed unknown. We propose a simple low-complexity subspace clustering algorithm, which applies spectral clustering to an adjacency matrix obtained by thresholding the correlations between data points. In other words, the adjacency matrix is constructed from the nearest neighbors of each data point in spherical distance. A statistical performance analysis shows that the algorithm exhibits robustness to additive noise and succeeds even when the subspaces intersect. Specifically, our results reveal an explicit tradeoff between the affinity of the subspaces and the tolerable noise level. We furthermore prove that the algorithm succeeds even when the data points are incompletely observed with the number of missing entries allowed to be (up to a log-factor) linear in the ambient dimension. We also propose a simple scheme that provably detects outliers, and we present numerical results on real and synthetic data.


Subspace clustering, spectral clustering, incomplete observations, outlier detection, concentration of measure, order statistics

Code to reproduce the images and tables in this paper is available here.

Download this document:


Copyright Notice: © 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.