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Abstract— A wireless body area network with an average
throughput of 500 kbps is considered based on ultra-wideband
(UWB) pulse position modulation. For a long battery autonomy
ultra low power consumption is essential. In [1] a FCC compliant
ultra low power UWB communication system was presented.
By means of a 1% duty cycle at 50 Mbps peak data rate, the
power consumption of the system is estimated below 1 mW.
To increase inter-symbol interference (ISI) robustness as well as
for synchronization, a simple post-detection maximum-likelihood
sequence estimator (MLSE) has been presented [2], [3]. In this
work, we extend this MLSE approach to over-sampled energy
detectors and non-ideal integration windows. Furthermore, we
present optimal MLSE metrics based on partial channel state
information as a performance benchmark.

I. INTRODUCTION

Recently, ultra-wideband (UWB) wireless body area networks
(WBAN) gained much interest due to a multitude of attractive
applications, such as wireless health monitoring or ubiquitous
computing. In a WBAN, a number of small nodes are placed
very close to the human body. Since WBAN nodes get their
power from rechargeable batteries, it is inevitable that they are
extremely energy efficient. To meet such energy requirements,
a low duty cycle operation of the nodes and thus a high peak
data rate is essential. An ultra low power UWB communica-
tion system has been presented [1] complying with the Federal
Communication Commission’s (FCC) regulations. With a 1%
duty cycle operation realized by a peak data rate of 50 Mbps
an average power consumption below 1mW can be achieved.
Due to low complexity requirements, an orthogonal binary
pulse position modulation (BPPM) was considered combined
with a simple energy detector (ED).
Due to the high pulse rate of 50 Mbps, even a moderate
channel delay spread leads to inter-symbol interference (ISI).
This drastically degrades the performance of the ED, which
is very sensitive to ISI. For increased ISI robustness and
a power efficient symbol synchronization, a simple post-
detection maximum likelihood sequence estimator (MLSE)
has been presented [2], [3]. The MLSE bases its decision on
the output samples of a non-linear frontend which consists of
a squaring device and a low pass (LP) filter, which acts as
low complexity integration unit. In this work, we extend the
system to the case of an over-sampled frontend and estimate
the performance increase as a function of over-sampling.
Furthermore, a simple but efficient equalization approach is

proposed to mitigate ISI effects, introduced by practical low
pass filters [1].
In optical communications energy detection based MLSE is
well understood [4]. Also publications on MSLE in UWB im-
pulse radio (UWB-IR) can be found [5]. However, linearized
system are used and effects of non-linear cross-terms or non-
Gaussian distributions are neglected.
The main contribution of this work is the application of
the MLSE principle to an over-sampled, non-linear output
of an analog UWB BPPM frontend, explicitly taking into
account the effect of non-linear cross-correlation terms, data
dependent noise variances, non-Gaussian distributions as well
as non-ideal integration windows. Different sub-optimal low
complexity MLSEs are investigated assuming Gaussian dis-
tributed samples at the output of the non-linear frontend.
For the cases of instantaneous and average power delay pro-
file (IPDP/APDP) knowledge at the receiver, optimal MLSE
metrics are derived. They take into account non-Gaussian
distributions and serve as benchmark for the sub-optimal
receiver structures. Although the frontend is over-sampled, all
MLSEs are implemented as simple Viterbi algorithms which
work at symbol rate and with only very few states.
As a next step towards practical receiver realization, the effect
of non-ideal LP filters is considered. It is shown that ISI
introduced by LP filters of small bandwidth can be removed
almost entirely by a simple additional equalizer. As a de-
creased LP bandwidth reduces synchronization requirements,
this equalization is a promising add-on in practical systems.
Overall, the presented scheme is a very attractive candidate
for ISI mitigation and symbol synchronization in ultra low
complexity receivers.
The paper is organized as follows. In Section II, the system
model is introduced. The MLSE metrics are evaluated in
Sections III and V. The equalizer for non-ideal LP filtering is
discussed in Section IV. Performance results are presented in
Section VI followed by a short summary in Section VII.

II. DISCRETE SYSTEM MODEL

According to Fig. 1, a real discrete time system model of a
UWB-IR with BPPM is considered. It is assumed that only
one pulse per bit is transmitted. This is reasonable for short
range communication in WBANs due to a moderate path
loss [1]. Time-hopping is omitted as a time-division multiple



Fig. 1. Discrete system model

access (TDMA) approach is considered. The nominal pulse
period N determines a BPPM frame. Each frame contains
one transmit pulse. Depending on the BPPM symbol value,
the pulse is transmitted either in the first or the second BPPM
half-frame of duration N/2. The high peak data rate along
with a moderate delay spread yields ISI. Mapping the s-th
BPPM symbol to a binary vector according to

bs = 0 → ~xs = [ x2s x2s+1 ]T = [ 1 0 ]T (1)

bs = 1 → ~xs = [ x2s x2s+1 ]T = [ 0 1 ]T , (2)

the receive signal becomes

r[k] =
∑

s

x2sh [k − sN ]

+x2s+1h

[
k − sN − N

2

]
+ n [k] , (3)

with h[k] the discrete channel impulse response (CIR) of
the overall system including transmit and receive filter. The
channel taps h[k] and the noise samples n[k] are independently
Gaussian distributed. The receive signal r[k] is either fed to
the sub-optimal energy detector (top) or to the optimal receiver
(bottom), whose metric is evaluated directly from the s-th
receive vector ~Rs of length N. The output of the ED low pass
F (f) is sampled at 2Novsa/N. For notational convenience, the
vector ~Rs is divided into Np = 2Novsa parts of lp = N/Np
samples each, whereby N and Novsa are chosen such that lp
is an integer value:

~Rs =
[
~rT

s,0, ~r
T
s,1, . . . , ~r

T
s,Np−1

]T

. (4)

This is depicted in Fig. 1, too. The discrete CIR is split
accordingly into NpL parts of lp samples:

~hT
s =

[
~hT

s,0,
~hT

s,1, . . . ,
~hT

s,NpL−1

]T

, (5)

where L = dNh/Ne equals the number of consecutive
symbols which are covered by one CIR. Thereby, Nh is the
maximal number of channel taps. One part of ~Rs is now
written as

~rs,n =
2L−1∑

i=0

~hs−i,n+iNovsax2s+b n
Novsa

c−i + ~ns,n, (6)

where ~ns,n is jointly Gaussian with E {
~ns,n~nT

s,n

}
= σ2I.

III. MLSE FOR OVER-SAMPLED ENERGY DETECTORS

In an ideal ED frontend, the impulse response of the filter
f [k] is realized as rectangular window of length lp. Hence, the
frontend splits each BPPM symbol into Np parts and generates
the observation vector

~Ls =
[
Ls,0, . . . , Ls,Np−1

]
. (7)

The n-th sample of the s-th symbol at the ED output equals:

Ls,n =
2L−1∑

i=0

2L−1∑

j=0

Ĉs,n,i,jX̂s,n,i,j + zs,n + qs,n, (8)

with

Ĉs,n,i,j = ~hT
s−i,n+iNovsa

~hs−j,n+jNovsa (9)

X̂s,n,i,j = x2s+b n
Novsa

c−ix2s+b n
Novsa

c−j , (10)

and

zs,n ∼ N

0, 4σ2

2L−1∑

i=0

2L−1∑

j=0

Ĉs,n,i,jX̂s,n,i,j


 (11)

qs,n ∼ χ2

(
N

2Novsa
σ2,

N

Novsa
σ4

)
, (12)

where χ2 has N
2Novsa

degrees of freedom. The presented
MLSE post-detectors have only limited CSI. In detail, three
different MLSEs are considered. MLSE-C1 and MLSE-C2
are based on instantaneous channel knowledge. MLSE-C1
knows the instantaneous correlation matrix C1 = Ĉs with
Ĉs,α,β = ~hT

s,α
~hs,β . MLSE-C2 knows only the diagonal values

of C1 and assumes that the cross-correlations are zero, i.e.,
C2 = I[~hT

s,0
~hs,0,~h

T
s,1

~hs,1, . . . ,~h
T
s,NpL−1

~hs,NpL−1]. MLSE-C3
is based on average power knowledge. As we assume inde-
pendently distributed channel taps C3 = E{C1} = E{C2} is
diagonal.

Conditioned on their CSI, the MLSEs assume Gaussian
distributed samples at the output of the integrator F (f). This
approximation is justified by the Central Limit theorem due to
the large number of samples in the summation. Furthermore,
they assume no correlation between the samples Ls,n, condi-
tioned on the CSI. This is correct for MLSE-C1 and MLSE-
C2 as they have instantaneous CSI but not for MLSE-C3. All
the same MLSE-C3 performs well. All considered MLSEs are
realized by Viterbi algorithms maximizing:

argmax
~b

∑
s

log
(
p

(
~Ls|bs, bs−1, . . . , bs−L+1,C

))
, (13)



with

log
(
p

(
~Ls|bs, bs−1, . . . , bs−L+1,C

))
=

Np−1∑
n=0

−0.5 log
(
2σ2

s,nπ
)− |Ls,n −ms,n|2

2σ2
s,n

, (14)

and

ms,n =
2L−1∑

i=0

2L−1∑

j=0

Ĉs,n,i,jX̂s,n,i,j +
N

2Novsa
σ2 (15)

σ2
s,n = σ2

2L−1∑

i=0

2L−1∑

j=0

Ĉs,n,i,jxs,n,i,j +
N

Novsa
σ4. (16)

Increasing the over-sampling rate Novsa inherently increase the
channel estimation effort.

IV. EQUALIZING PRACTICAL LOW PASS FILTERS

By now the integration was done by an ideal rectangular
window of lp = N/Np samples, i.e., no additional ISI was
introduced by the LP. If the integration is realized by a realistic
LP filter, e.g., a first order LP filter, significant ISI can occur.
Fortunately, the LP introduces correlation to signal and noise
component exactly the same way as it is located after the
amplifiers and the additive noise. For certain types of LP
filters, we show that a simple zero-forcing (ZF) equalization
is optimal in the sense that it entirely removes ISI without any
performance loss and demonstrate its effectiveness in practice.
In detail, we consider low pass filters of the form

f [k] =
∑

d

fdw N
Np

(
k − d

N

Np

)
, (17)

with

wM [n] =
{

1 0 ≤ n ≤ M
0 else , (18)

and the filter coefficients fd. The correlated output of the ED
can therefore be described by:

L̃n =
∑

d

fdLn−d. (19)

This correlation can be entirely removed using a simple ZF
equalizer in the digital domain without any performance.
Although analog filters described by (17) are hardly realizable
in practice, a realistic LP filter of small bandwidth can be
approximated pretty well by such a filter characteristic and can
be equalized efficiently in the digital domain. Hence, a first
order LP and a simple equalizer lead to an ultra low power
implementation of an almost perfectly rectangular integration
window. The equalization can also be integrated directly into
the MLSE metric. However, this is omitted due to notational
clarity.

V. OPTIMAL MLSE RECEIVERS IN FAST FADING

In this section, we present two Viterbi algorithms for the
cases, where the receiver has access to the linear vector ~Rs

and knows the overall IPDP or APDP, respectively. They
are considered as benchmark for the sub-optimal but much
simpler over-sampled energy detection MLSE. The metrics
have been evaluated by splitting up the symbolwise ML
metrics presented in [3]. For clarity, we restrict our attention
to one slot interference, where the discrete channel can be split
into a signal component ~vs and an interfering component ~gs

of length N/2 each:

~hT
s =

[
~vT

s , ~gT
s

]
. (20)

As shown in Fig.1, the Viterbi uses the metric ~f( ~Rs), which
is based on ~Rs from (4), the partial CSI C and the previous
bit. This leads to:

argmax
~b

∑
s

log
(
p

(
~Rs|bs, bs−1, C

))
. (21)

In fast fading, the observation vector ~Rs is independent of the
past if bs−1 and C are known. Therefore, the presented Viterbi
algorithms are optimal MLSEs.

A. Optimal Metric Based on APDP

We split the APDP ~λh into two parts ~λh =
[
~λT

v , ~λT
g

]T

with:

~λT
v = E

{[
v2

s,0, , . . . , v
2
s,N/2−1

]}
(22)

~λT
g = E

{[
g2

s,0, , . . . , g
2
s,N/2−1

]}
, (23)

and reorder the observation vector ~Rs according to
~ds =

[
rs,0, rs,N/2, rs,1, rs,N/2+1, . . . , rs,N/2−1, rs,N−1

]
. (24)

With this, the a-posteriori probability of the observation ~ds or
equivalently ~Rs can be described by:

p
(

~ds|bs, bs−1, ~λv, ~λg

)
=

(
1√
2π

)N 1√
∆d

exp {G} ,

(25)

with

G = −1
2

N/2−1∑

k=0

r2
kλ−1

d,2k,2k + r2
k+N/2λ

−1
d,2k+1,2k+1

+2rkrk+N/2λ
−1
d,2k,2k+1. (26)

The determinant is:

∆d =
(

1
16

)N
2

N/2−1∏

j=0

Ψj ,

(27)

with

Ψj = 16σ4 + 16λv,jλg,j (bs−1bs + (1− bs))
+16λg,jσ

2 (bs−1 + (1− bs))
+16λv,jσ

2 (bs + (1− bs)) . (28)



The diagonal elements of the inverse equal:

λ−1
d,k,k =

16
(
λg,dk/2e (1− bs) + λv,dk/2ebs + σ2

)

Ψdk/2e
, (29)

for k even and

λ−1
d,k,k =

16
(
λg,dk/2ebs−1 + λv,dk/2e (1− bs) + σ2

)

Ψdk/2e
, (30)

for k odd. The non-zero off-diagonal elements are:

λ−1
d,k,k+1 = λ−1

d,k+1,k = −16λg,dk/2ebs−1 (1− bs)
Ψdk/2e

, (31)

whereby k is even. In case of fast fading, the cross-correlation
terms vanish and the metric simplifies to:

∆d =
N−1∏

k=0

λh,k (32)

λ−1
d,k,k = 1/λh,k (33)

G = −1
2

N−1∑

k=0

r2
k

λh,k
. (34)

Under the assumption of fast fading and independently dis-
tributed Gaussian channel taps, this metric equals the optimal
sequence detector and is nearly bit error rate (BER) optimal.

B. Optimal Metric Based on IPDP
For evaluation of the IPDP metric, we split the probability

p
(

~Rs|bs, bs−1, CIPDP

)
=

N/2−1∏

k=0

p
(
rs,k, rs,k+N/2|bs, bs−1, xk, uk

)
, (35)

with ~x and ~u the amplitudes of ~v and ~g, respectively. If the
IPDP is known to the receiver and the phase, i.e., the polarity
of the multi-paths changes from symbol to symbol, presented
Viterbi algorithm is optimal. For the sake of clarity, it is
assumed that the IPDP stays constant over one burst, leading
to following metric:

p
(
rs,k, rs,k+N/2|bs, bs−1, xk, uk

)
=

1
4πσ2

exp
{
− 1

2σ2

[
r2
s,k + r2

s,k+N/2 + x2
k

+u2
k [bs−1 + (1− bs)]

]}
[
cosh

(
1
σ2

[
(1− bs−1) rs,kuk + bsrs,k+N/2uk

+bsrs,kxk + (1− bs) rs,k+N/2xk

])

exp
{
− 1

σ2
[bs (1− bs−1)xkuk]

}
+

cosh
(

1
σ2

[
(1− bs−1) rs,kuk + bsrs,k+N/2uk

−bsrs,kxk − (1− bs) rs,k+N/2xk

])

exp
{

1
σ2

[bs (1− bs−1)xkuk]
}]

.

(36)

VI. PERFORMANCE

To see the impact of over-sampling and LP filtering, we
compare the performance of different MLSEs by means of
BER simulations. The BER is plotted over the signal-to-noise
ratio Eb/N0, where Eb denotes the energy per bit and N0/2
is the noise power spectral density. We assume uniformly
distributed channel taps, which is a kind of worst case scenario
for a given delay spread. To achieve a data rate of 50 Mbps
with BPPM, one bit has to be transmitted every 20 ns. A
BPPM frame has a duration of T = 20 ns and a half-frame a
duration of 10 ns. Hence, ISI occurs for CIRs with a duration
of more than τ = 10 ns. To investigate the performance
gains achievable by over-sampling, moderate and strong ISI
are considered assuming an ideal integration window. In case
of moderate ISI the CIR has a duration of τ = 14 ns and in
case of strong ISI τ = 19 ns.

a) Moderate ISI: In Fig. 2, the performance of the
MLSE-C2 (instantaneous without cross-terms) and MLSE-C3
(average) is shown for different over-sampling factors Novsa.
As benchmark, the performance curves of the significantly
more complex but optimal MLSE-APDP and MLSE-IPDP are
given. The performance of the symbolwise ED is indicated as
well and demonstrates its high sensitivity even to moderate
ISI. Already the very limited CSIs C2 or C3 without over-
sampling lead to significant performance improvement. But
both MLSE-APDP and MLSE-IPDP show still significantly
better performance highlighting that there is still space for
improvement. A small over-sampling factor Novsa = 2 brings
again a large performance gain for both MLSE-C2 and MLSE-
C3. The performance of the MLSE-C3 does not improve
further by increasing the over-sampling factor to Novsa > 2.
This is due to the fact that the uniform APDP with τ = 14 ns
can be described almost perfectly by 3 integration parts of
Tint/Novsa = 5ns duration. Depending on the APDP at hand,
higher over-sampling can still bring improvements in other
scenarios. The performance gap between the MLSE-C3 and
the MLSE-APDP is due to the non-Gaussian distribution and
the correlation between first and second half-frame considered
in the MLSE-APDP metric. The MLSE-C2 further improves
with higher over-sampling and for Novsa = 12 achieves almost
the same performance as the much more complex MLSE-
APDP.

b) Strong ISI: For a uniform APDP with τ = 19 ns,
the MLSE-C3 performance does not improve significantly
with over-sampling, as the APDP over two PPM slots is
almost flat. This is shown in Fig. 3. The MLSE-C3 does
hardly improve even for an over-sampling of Novsa = 60.
MSLE-C1 and MLSE-C2 improve steadily with increasing
sampling rate. Although the over-sampling gains do not seem
very large on first glance, there is still a SNR difference
of about 4 dB between Novsa = 1 and Nova = 120 at a
BER = 10−3 and much larger gains can be expected for
non-uniform APDPs. The performance gap of 3 dB between
MLSE-C2 with Novsa = 120 and the MLSE-IPDP arises
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Fig. 2. BER performance in case of moderate ISI (τ = 14 ns)
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Fig. 3. BER performance in case of strong ISI (τ = 19 ns)

due to the Gaussian assumption made for the metric of the
MLSE-C2, which looses its appropriateness with increasing
over-sampling. The consideration of the cross-terms in the
metric of C1 does not improve the performance significantly
compared to MLSE-C2. This agrees with earlier findings for
Novsa = 1. It was found that the cross-terms bring only small
improvement for ISI below 20 ns [2].
The performance of the MLSE-APDP depends much on the
amount of information contained in the APDP. If the APDP is
the result of averaging over very different channels, the APDP
is very different from the IPDP and contains hardly useful
information. In this case, the MLSE-APDP approaches the
MLSE-ED. However, if the APDP results from averaging over
rather similar channels, such as in a slow fading scenario, the
APDP resembles pretty much the IPDP and contains a lot of
useful information. In this case, the MLSE-APDP approaches
the MLSE-IPDP. UWB is basically an indoor technology,
where slow fading scenarios dominate and the APDP is
similar to the IPDP. Hence, presented gains for MLSE-C1 and
MLSE-C2 based on instantaneous energy values, show a high
potential of this approach for many UWB LDR applications.

c) Non-ideal Low Pass Filtering: By now the integration
unit was idealized by a rectangular integration window. But
to achieve an ultra low power consumption, the integration
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Fig. 4. BER performance with first order LP filter of 20 MHz bandwidth
and ZF equalizer

window is preferably realized by a simple first order low pass
filter [1]. In order to enable a reasonable integration duration
and hence, to relax synchronization requirements, a small
bandwidth is required. This introduces ISI. In Section IV, we
showed that by a simple ZF equalizer of only a few samples
the ISI can be canceled almost entirely. In Fig. 4, this is
shown for moderate ISI with τ = 14 ns, an over-sampling
factor of Novsa = 4 and LP filter bandwidth B = 20 MHz.
By application of the first order LP filter the performance
degrades significantly up to 5 dB due to strong ISI. However,
the ISI is entirely removed again by the simple ZF equalizer.

VII. CONCLUSIONS

A promising low complexity MLSE post-detection approach
for ISI mitigation was investigated. Its potential was estimated
by benchmarking it to optimal MLSE metrics derived for
APDP and IPDP knowledge. It was shown that the presented
MLSE approach again improves significantly, if marginal
over-sampling is applied. Furthermore, the loss from Gaussian
approximation and neglected cross-correlations was estimated
below 3 dB. A simple ZF equalizer was presented which
effectively cancels ISI introduced by a realistic LP filters
and therefore, makes the proposed post-detection a valuable
scheme for future ultra low power transceivers.
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