Inter-Node Distance Estimation from Multipath Delay Differences of Channels to Observer Nodes

Authors

Gregor Dumphart, Marc Kuhn, Armin Wittneben, and Florian Trösch

Reference

IEEE International Conference on Communications (ICC), Shanghai, China, May 2019.

[BibTeX, LaTeX, and HTML Reference]

Abstract

We study the estimation of distance d between two wireless nodes by means of their wideband channels to a third node, called observer. The motivating principle is that the channel impulse responses are similar for small d and drift apart when d increases. Following this idea we propose specific distance estimators based on the differences of path delays of the extractable multipath components. In particular, we derive such estimators for rich multipath environments and various important cases: with and without clock synchronization as well as errors on the extracted path delays (e.g. due to limited bandwidth). The estimators readily support (and benefit from) the presence of multiple observers. We present an error analysis and, using ray tracing in an exemplary indoor environment, show that the estimators perform well in realistic conditions. We describe possible localization applications of the proposed scheme and highlight its major advantages: it requires neither precise synchronization nor line-of-sight connection. This could make wireless user tracking feasible in dynamic indoor settings.

Comments

Conference slides are available HERE.


Download this document:

 

Copyright Notice: © 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.